"Sakha da(qani): Negative Polarity, Conjunction, and Focus"

Ian L. Kirby ${ }^{1}$ (Harvard University)
February 8, 2020
$\mathrm{Tu}+5$

1 Introduction

- The Siberian Turkic language Sakha (also known as Yakut), has a quantifier particle daqaní [dabani], ${ }^{2}$ which is often shortened to $d a$ (henceforth $d a(q a n \dot{\dot{I}}))$. Da (qaní) has three main roles. ${ }^{3}$
- With WH-words and biir 'one', da(qani) forms negative polarity items (NPIs):
(1) NPIs^{4}
a. Min [tugu da(qaní)] aax-*(pa)-t-im

1SG what.ACC $d a$ read-(NEG)-PST-1SG
'I didn't read anything'
b. Min [biir da kinige-(ni)] aax-*(pa)-t-im

1SG one $d a$ book-(ACC) read-(NEG)-PST-1SG
'I didn't read any book(s)' / 'I read no book(s)'

- Da(qani) also functions as a scalar focus particle with common nouns (2-a), non-low point quantifiers (2-b), and marks concessive clauses (2-c):
(2) Scalar focus particle
a. Even particle
[Onnooqor studjen da(qani)] iti kinige-ni aax-(pa)-t-a
even student $d a$ that book-ACC read-(NEG)-PST-3SG
'Even the student (didn't) read that book'
b. Intensifiers, following non-low point quantifiers
[Elbex da kihi] kinige aax-(pa)-t-e
many $d a$ person book read-(NEG)-PST-3SG
(Positive): 'So many people read (the) book' (more people than the speaker expected)
(Negative) 'So few people read (the) book' (fewer people than the speaker expected)
c. Concessive
$\left[\right.$ Djulus $_{i}\left[\right.$ miigin $_{S}$ sötüölee-bit- e_{S}] die-bit- e_{i} da(qani)] min onu baara
[Djulus [1SG.ACC swim-REM.PST-3SG] say-REM.PST-3SG da] 1SG that.ACC COP
kiaj-an sötüölee-bep-pin
be.able-CVB swim-NEG.AOR-1SG
'Even though Djulus said I swam, I actually can't swim'
- Finally, $d a(q a n \dot{i})$ appears in coordination constructions, where it appears to the right of each coordinand. In a positive environment, this means 'both...and' (3-a). In a negative environment, this means 'neither...nor' (3-b).

Da(qani)...da(qani) coordination

a. Ian [kofje da(qaní)] [čaj da(qaní)] is-t-e

Ian coffee $d a$ tea $d a$ drink-PST-3SG
'Ian drank both coffee and tea'
(coffee \wedge tea)

[^0]b. Ian [kofje da(qanì)] [čaj da(qaní)] is-pe-t-e

Ian coffee $d a$ tea $d a$ drink-NEG-PST-3SG
'Ian drank neither coffee nor tea'
$\neg($ coffee \vee tea $)$

- This is a typologically interesting distribution-
(4) Assumptions
a. One standard view of NPIs is that they are existentials which obligatorily scope below negation (Fauconnier 1975; Ladusaw 1979; Chierchia 2013; Crnič 2014).
b. Existentially quantified propositions $(\exists x[A(x) \wedge B(x)])$ are equivalent to disjunctions $(p \vee q)$ (Keenan and Faltz 1985; Keenan and Stavi 1986).
c. $D a(q a n \dot{\dot{1}})$ in all of these environments is the same morpheme-this is not accidental homophony:
(i) Length: Daqani is three syllables
(ii) Alternation: If daqan $\dot{\nexists}$ is available, it can be optionally shortened to $d a .{ }^{5}$
- A connection between NPIs built out of WH-words/indefinites or the numeral 'one' (1) and a particle which elsewhere means even (2) is found in many languages-e.g. Hindi koii bhii 'someone+even' ek bhii 'one+even' (Lahiri 1998). Called even-some/even-one NPIs by Chierchia (2013).
- While on its own, a construction like $d a(q a n \dot{i}) \ldots d a(q a n \dot{i})$ coordination (3) which means 'and' in positive environments but 'or' under negation is not unheard of, ${ }^{6}$ elements which serve this purpose and build NPIs generally have a much wider distribution than Sakha $d a(q a n \dot{)})$-namely, that they can be used as additive particles (e.g. X too, also X, X either) and may even have universal readings outside of coordination. $D a(q a n \dot{i})$ doesn't seem to display additivity (and in fact, appears to be ANTI-ADDITIVE in NPIs) ${ }^{7}$ and, outside of coordination, never displays a universal-like meaning.

1.1 Preview of analysis and road-map

- In $\S 2$, I will compare the distribution of $d a(q a n \dot{i})$ to similar elements in other languages-namely Hungarian $i s$, SerBo-Croat i, Hebrew kol, and Japanese -mo, as well as $d a(q a n \dot{\mathfrak{i}}$)'s cognate in various other Turkic languages.
- Semantically, I will argue that the behavior of $d a(q a n \dot{)})$ in all of these environments can be accounted for within the alternative-semantics based, GRAMMATICAL THEORY OF POLARITY SENSITIVITY (following Krifka 1995; Lahiri 1998; Fox 2007; Fox and Katzir 2011; Crnič 2011, 2014; Chierchia 2004, 2006, and especially Chierchia 2013).
- In §3, I provide a semantic account of $d a(q a n \dot{\ddagger})$ NPIs (§3.1) and coordination structures (§3.2).
- It is argued that $d a(q a n \dot{)})$ marks the alternatives of its host as obligatorily active-these alternatives are in turn interpreted by a covert operator, which accounts for the NPI behavior. Most radically, I argue that the 'both...and' coordination is underlyingly a disjunctive (or) meaning which is uniformly strengthened to and in positive environments.
- $\S 4$ is an appendix, providing additional data on the interaction of $d a(q a n \dot{i})$ and differential object marking (§4.1), some generalizations about the distribution of full daqani vs. reduced $d a(\S 4.2$), additional licensing environments for $d a(q a n \dot{\mathrm{~F}})$-marked NPIs (§4.3), some additional discussion of biir da NPIs (§4.4), and a brief discussion of the semantics of $d a(q a n \dot{i})$ as a scalar particle (§4.5).

2 Typology of da(qani)

- There is an growing literature examining the patterns of quantifier particles which seeks to explain their semantics as stable across the environments they occur in, rather than treating the particle + host as an idiomatic expression (Szabolcsi and Haddican 2004; Szabolcsi 2010, 2015, 2017, 2018).
- The composition of a quantifier particle+host can reveal morphemic distinctions that may not be apparent in English-like languages. For example, the English NPI ever cannot be broken down into smaller sub-parts that are intelligible to a native speaker. But if a language has many NPIs with the same morpheme, it suggests that there is a stable semantic denotation underlying for each.

[^1]－What is really interesting，and exciting for those who care about making cross－linguistic generaliza－ tions about morpho－semantics，is the additional particles that these elements can appear in，as it reflect semantic features that are not necessarily apparent in a single case．

2．1 How unusual is this distribution？

（5）Distribution of various quantifier particles in Sakha（fieldwork），Hungarian（Szabolcsi，see above citations），Serbian／Bosnian／Croatan（SerBo－Croat）（from Szabolcsi 2017；Progovac 1994；Mitrović and Sauerland 2014，2016），Modern Hebrew（Bar－Lev and Margulis 2014；Glinert 1989；Tonci－ ulescu 2011），and Japanese（Szabolcsi 2015；Kratzer and Shimoyama 2002；Shimoyama 2006， 2011）．Grayed out cells indicate the presence of elements which overlap at least two of the fol－ lowing roles（i）NPIs，（ii）conjunction（ $\mathrm{p} \wedge \mathrm{q}$ ），（iii）universal quantification

		$\begin{array}{r} \mathrm{X} \text { ! !u } \\ \mathrm{XI}!\left(\mathrm{ye}_{2}\right) \end{array}$	$\begin{array}{r} \text { ues X } \\ \text { s! } \mathrm{X} \text { sou ut } \end{array}$	ә！̣шә x	．гәч！${ }^{\text {¢ }}$	
ou－X ou－X	X ${ }^{\text {n¢ч }}$			（¥ueb）ep X（．oboouuo）	X นәлә	
	X шャ．s	X ！	S！X	ข！บə X	007 X	
					（чҰ०¢ ¥ои）	ио！̣еu！p．ioo，
$(e y-) \chi^{\text {ey }}$ ex－X	人 ${ }^{0} \mathrm{Xo}$	X ！！－！X ！！	＇ A Kisen X Kisen	$n n p$ X $n n p$ X	χ ло X ләчч！	
			mas X uas X	（ччеb）ер χ（ч̣иеb）ер X Х ер ә！шә X ер ә！џәә （ұueb）ер χ（ұиеb）ер χ		
		X ！${ }^{\mathbf{u}} \mathrm{X}$ ！${ }^{\text {u }}$				
	$\chi^{\text {นәч－әл }} \mathrm{X}$ บәч		X pu！̣um X ри！̣u			
		X！ X ！	＇S！X S！X		X pue X чұоq	
	X Iоч			X ep	IdN＇X ${ }^{\text {Kue }}$	s．əy！quenOิ
	рехә је	оч（7）－！${ }^{\text {u }}$	！y－uəs	p / u	IDN＇Kpoqou	
ои－ә．трр	рехә－поя	оу（7）－؟		（¥̣ueb）ep u！̣	IdN＇әuо反ие	
			s！ X теִ．че	（ғueb）ep X		
	$\begin{array}{r} \text { X Ioy } \\ \text { рехә- } \\ \text { X [оч } \end{array}$			（¥ueb）ep X	IDH X ${ }^{\text {¢ }}$ ¢әлә	
ои－әр－ә．хрр		оч（7）о！！	！9－xpye	тerebeq u！̣y		
			иว－ри！̣u	（uez－f．teq）X ！！p．u！${ }^{\text {a }}$ sex		
				！ب！̣ ！！ppu！q sex		
ои－әлер	ure－n¢	оу－ens	بִ－иә－ри！̣u	＇f．req	A＇әиокıәлә	
еу－әлер	nчәчș！u	оч（7）－əu	¢9－егел	ว！ฺә шب̣ ＇әгә шب̣	E＇әиоәшоя	
әтер	！ui	0y（7）	！ 1	U！̣	очм	
әsəurder	мә．Іqә H			еч丬＇S		К．о．8əұе D

－As we see from table（5），Hungarian is（negative concord sem）and SerBo－Croat i（negative concord
$n i)$ pattern closely in quantifiers, coordination, and scalar particles, while Japanese -mo and Hebrew kol show significant overlap in their roles as quantifiers. Japanese -mo patterns closely to Hungarian is/sem, and SerBo-Croat $i / n i$, though I lack data for many of the functions. This overlap is simplified in (6):
$\boldsymbol{X}='^{\prime}$ not available for this role', empty cells indicate lack of data

Role	Sah $d a($ qan $)$	Hun. is/sem	SrBo-Cro $i / n i$	Heb kol	Jpn -mo
everyone, \forall	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	\checkmark	\checkmark
every, all X \forall	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	\checkmark	
anyone, FCI	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	\checkmark	\checkmark
even X, FCI	\checkmark	\checkmark	\checkmark		
anyone, NPI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
nobody, NCI	n / a	\checkmark	\checkmark		
any X, NPI	\checkmark			\checkmark	
both X and Y	\checkmark	\checkmark	\checkmark	\boldsymbol{X}	\checkmark
neither X nor Y	\checkmark	\checkmark	\checkmark	\boldsymbol{X}	
X too	\boldsymbol{X}	\checkmark	\checkmark	\boldsymbol{X}	\checkmark
even X	\checkmark	\checkmark	\checkmark	\boldsymbol{X}	\checkmark
X either	\boldsymbol{X}	\checkmark	\checkmark		

- The most interesting difference between Sakha $d a(q a n \dot{\dot{i}})$ on the one hand and Hungarian is/sem, SerboCroat $i / n i$ and Japanese -mo on the other is that $d a(q a n \dot{\text { i }})$ lacks the additive particle roles X too and X either. Instead, Sakha uses emie.

X too
a. Djulus kofje is-t-e. Min $\{$ emie / \#da(qani) $\}$ is-t-im
Djulus coffee drink-PST-3SG. 1SG $\{$ emie / da\} drink-PST-1SG 'Djulus drank coffee. I also drank (coffee'

X either

a. Djulus kofje is-pe-teq-e. Min $\{$ emie / \#da(qani) $\}$ is-pe-teq-im Djulus coffee drink-NEG-REM.PST-3SG. 1sG \{emie / da\} drink-NEG-REM.PST-1SG 'Djulus didn't drink coffee. I didn't either/ I also didn't'

- Additive too and either are essentially presuppositions that some other proposition other than the focus value of too, either is true (Rullmann 2003). Additivity would be a convenient way to explain why Hungarian is/sem, SerBo-Croat $i / n i$, and Japanese -mo also appear in conjunction (both X and Y) roles. But, crucially, the fact that Sakha $d a(q a n \dot{i})$ appears in these constructions as well suggests that it is not strictly required. ${ }^{8}$
- Note that even X also has an additive component (Crnič 2011). But in Sakha, da(qaní) cannot express an even-meaning without the aid of additional elements in positive environments:

$$
\begin{align*}
& {[? ? \text { (onnooqor) studjen da(qaní) }] \text { iti kinige-ni aax-t-a }} \tag{9}\\
& \text { even/especially student } d a
\end{align*}
$$

'Even the student read that book'

- In other words, (9) suggests that $d a(q a n \dot{)})$ can appear in the scope of an additive operator, but it does not express additivity on its own.
- Considering Japanese -mo, another possibility is that a both...and meaning and an NPI can be linked by universal quantification (or a universal free-choice meaing). In fact, it has been argued that Japanese WH $+m o$ NPIs are actually universals which obligatorily scope over their licenser (Furukawa 2007; Shimoyama 2011). This is not a crazy assumption, given the DeMorgan's equivalence:

$$
\begin{equation*}
\neg \exists \mathrm{xP}(\mathrm{x}) \Leftrightarrow \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \tag{10}
\end{equation*}
$$

- But a wide-scope universal account of Sakha $d a(q a n \dot{i})$ predicts that $\mathrm{WH}+d a(q a n \dot{\mathrm{~F}})$ could express a universal meaning without negation. It cannot-as we saw in (1), it is simply ungrammatical.
- Further, WH $+d a(q a n i)$ lacks free-choice readings. Instead, Sakha uses baqarar (a particle related to baqar 'to want'):

[^2]Behavior with modal:
a. Djulus [xanna $\left\{{ }^{*}\right.$ da(qaní) / baqarar $\}$] utuj-on söp Djulus where $\{d a \quad /$ baqarar $\}$ sleep-CVB can 'Djulus can sleep anywhere'

- A note about even $X, F C I$ in (5), (6)-this is distinct from a free-choice item like Japanese $W H$-de-mo or English any in that the free-choice reading is a product of an implicature, nOT the semantics of the particle per se:

Even FCI

a. Hungarian is (Szabolcsi 2017 (16)

Akár Mari is \{nyerhet / *nyer \}
want Mari is \{can.win / wins\}
'Anyone can win; to pick an arbitrary example, Mari'
b. Sakha da(qani)
iti kinige-ni $\{$ min da ehe-em da(qaní) $\}$ aaq-ian söp that book-ACC $\{1 \mathrm{SG} d a$ grandfather-1SG / grandfather-1SG $d a\}$ read-FUT can 'Even my grandfather can read that book (to pick an arbitrary example)'

2.2 $D a(q a n \dot{\Psi})$'s cognate in other Turkic languages

- When we investigate $d a(q a n \dot{i})$'s cognate in other Turkic languages, as well as the lexical items associated with the other roles discussed above, we see some unsurprising patterns.
- The following are from Öztopçu et al. 1999:
(13)

Oghuz

	Azerbaijani	Turkish	Turkmen
nobody	heç kəs	(hiç) kim-se	hiç kim-se
anybody	kim-sə, hər kəs	kim-se, her-kes	her kim
everybody	hər kəs	her-kes	her-kem
both...and	həm...həm	hem...hem	hem...hem
either...or	ya...ya [da]	ya...ya [da]	yä...yä [-da]
neither...nor	nə...nə [də]	ne...ne [de]	ne...ne [-de]
too	da, də	da, de	da, de, hem
also	da, də	da, de	da, de, hem

(14)

Kipchak

	Tatar	Kazakh	Kyrgyz
nobody	hich-kim	yesh kim	ech kim
anybody	ken-der här-kem	birew, är-kim	biröö, ar kem
everybody	här-kem	är-kim	ar kim
both...and	häm...häm	da...da	da...da
neither...nor	ni...ni	de...de	je...je
either...or	ya...ya	ne...ne	je...je
too	da, dä	taghı da	da
also	da, dä	taghı da	dagı da

(15) Karluk

	Uzbekh	Uyghur
nobody	hech kim	hech-kem
anybody	hamma, har kim	bir kim, biräv
everybody	har kim	här kim
both...and	ham...ham	häm...häm
neither...nor	na...na	nä...nä
either...or	yo...yo	ya[ki]...ya[ki]
too	ham	-mu
also	-mu	ham

- In these brief samplings from Oghuz-, Kipchak-, and Karluk-branch languages, we see a few patterns. Firstly, all three of these branches lack anything like $d a(q a n \dot{\dot{x}})$ in the quantifier domain-rather, they use the borrowed Persian morphemes hiç for NPIs, har for universals (Kelepir 1996; Erdal 2004; Szabolcsi 2018). Ham is also borrowed form Persian.
- In the Oghuz and Kipchak samplings, da(qaní)'s cognate is used as an additive particle (too, also). We also observe neither...nor / both...and flip in Kazakh (14).
- Obviously, these samplings are not representative: $d a \ldots d a$ can also mean both...and in Turkish, for example (16-a), as well as neither...nor (16-b):
a. Hasan da Ali de Zeynep de dün sinema-ya gi-t-ler Hasan da Ali da Zeynep da yesterday cinema-Dat go-PST-3PL
'Hasan and Ali and Zeynep went to the movie theater yesterday' (Kornfilt 1997, p.113)
b. Hasan da Ali de Zeynep de dün sinema-ya gi-me-ti-ler

Hasan da Ali da Zeynep da cinema-DAt go-NEG-PST-3PL
'Neither Hasan nor Ali nor Zeynep went to the movies yesterday'

- Tuvan is the only other Siberian Turkic language that I have been able to find any data on: in Tuvan, $d a(q a n \dot{\text { i }}$)'s cognate - $d a a$ functions as an NPI (17) and as a universal quantifier (18) (Krueger 1977; Harrison and Anderson 2006).
(17) Tuvan WH+daa NPIs
a. kım-daa bil-be-s
who- $d a$ know-NEG-??
'No one knows that'
b. Men ony kaz̆an-daa ut-pa-s men

1SG that when- $d a$ forget-NEG-?? 1SG
'I'll never forget that'
(18) Tuvan WH+daa universal quantifier/FCI
a. onu kım-daa bil-ir that who- $d a$ know-AOR
'Everyone knows that'
b. kaz̆an-daa nogaan çıdar yyas̆tar
when- $d a$ green ?? ??
'trees which always retain green (evergreens)'

- Tuvan -daa is also indicated as meaning 'both...and' (Harrison and Anderson 2006), though I lack any examples for this.
- Tuvan -daa tentatively seems to pattern closer to Japanese -mo, though further investigation is needed.

3 Semantics of da(qani)

- In the rest of this paper, I will argue that $d a(q a n \dot{i})$'s role in Sakha can be accounted for within the alternative-semantics theory of polarity sensitivity.
- First, I will explain how this theory accounts for NPIs $\S 3.1$, applying it to WH $+d a(q a n \dot{i})$ NPIs in

Sakha. ${ }^{9}$

- In $\S 3.2$, I explore how this theory can extend and explain the distribution of $d a(q a n \dot{i})$ in coordination structures.

3.1 NPIs

- It has long been noted that NPIs and scalar implicatures of existentials show significant overlap with regards to the direction of entailment that they appear within (Fauconnier 1975; Chierchia, Fox, and Spector 2012)-scalar implicatures arise in positive, upward entailing environments (19-a), where NPIs are ungrammatical. Scalar implicatures are cancelled in negative, downward entailing environments (19-b), where NPIs are grammatical.
a. Positive, upward entailing
(i) I read a page yesterday. (Scalar implicature = 'I read one page and no more')
(ii) ${ }^{*}$ I read any page yesterday.
b. Negative, downward entailing
(i) I didn't read a page yesterday. (no scalar implicature)
(ii) I didn't read any page(s) yesterday.
- Scalar implicatures arise in positive, upward entailing environments because there is a stronger alternative which, crucially, the speaker does not use-because the stronger alternative is not used, we pragmatically reason that the stronger alternative is false. BUT, ordinary scalar implicatures can be cancelled (e.g. I read a page yesterday...in fact I read 4 pages.)
- The grammatical theory of polarity sensitivity (Chierchia 2013) pushes the link between scalar implicatures and NPIs to its logical extreme:
(20) Link between ordinary scalars and polarity-sensitive items (PSIs) (quoted parts from Chierchia 2013, p.186)
a. Both ordinary scalar elements and PSI have scalar alternatives.
(i) "Alternatives generated by ordinary scalars are subject to relevance and can be pruned" (Where pruning means ignored, broadly defined)
(ii) "Alternative generated by PSIs like any are not subject to relevance. They cannot be pruned." In other words, the alternatives generated by PSIs are grammatically defined parts (hence the name gRammatical theory).
b. "Alternatives cannot be activated idly. If they are active, non-entailed ones must be eliminated"
(21) NPIs... (Crnič 2014 p.189-190)
a. "Denote existential quantifiers"
b. "Induce alternatives, similarly to focused elements"
c. "The alternatives they induce are utilized by specific alternative-sensitive operators"
- In the rest of this subsection, I will demonstrate this approach with regards to WH+da(qaní) NPIs. Biir da NPIs require further assumptions and are explored in Appendix §4.4.

```
Min kimi da(qani) kör-*(bö)-t-üm
1SG who.ACC da see-(NEG)-PST-1SG
'I didn't see anybody'
```

- The starting point for a denotation of (22) is the definition of kim. As a WH-indefinite, kim is an existential quantifier ($23-\mathrm{a}$): ${ }^{10}$
a. $\quad \llbracket \operatorname{kim} \rrbracket=\llbracket$ someone $\rrbracket=\lambda \mathrm{P}_{\langle\mathrm{e}, \mathrm{t}\rangle} \cdot \exists \mathrm{x} \in \mathrm{D}_{\mathrm{e}}[\operatorname{person}(\mathrm{x}) \wedge \mathrm{P}(\mathrm{x})]$
b. $\llbracket(22) \rrbracket=\exists x \in D_{e}[\operatorname{person}(x) \wedge \operatorname{see}(I, x)]$
- Without negation and $d a(q a n \dot{t}),(22)$ will have a meaning like (23-b).

[^3]- Considering a domain with two members \{Djulus,Tujara\}, (23-b) is equivalent to a disjunction of two propositions:
(24) ($\mathrm{p} \vee \mathrm{q}$), where $\mathrm{p}=$ 'I saw Djulus', $\mathrm{q}=$ ='I saw Tujara'.
- In (22), the semantic roleof $d a(q a n \dot{)})$ is that it marks the alternatives of kimi as obligatorily active:

$$
\begin{equation*}
\llbracket(22) \rrbracket=\mathrm{x}_{\mathrm{e}}[\operatorname{person}(\mathrm{x}) \wedge \operatorname{see}(\mathrm{I}, \mathrm{x})]_{[+\mathrm{ALT}]} \tag{25}
\end{equation*}
$$

- There are two types of alternatives for a disjunction $(\mathrm{p} \vee \mathrm{q})$: (i) the subdomain alternatives, which are the individual disjuncts $\{\mathrm{p}, \mathrm{q}\}$ (Sauerland 2004), and (ii) the stronger scalar alternatives, which is a conjunction $(\mathrm{p} \wedge \mathrm{q})$. Existentials have a natural Horn (1989) scale $(<\exists, \forall>$, i.e. $<\vee, \wedge>)$. This alternative set can be represented by a semi-lattice like (26):

Alternatives set of $(\mathrm{p} \vee \mathrm{q})$
$(\mathrm{p} \vee \mathrm{q})$ p Prejacent $(\mathrm{p} \wedge \mathrm{q})$ q D-alts (subdomain alternatives) σ - Alt (scalar alternatives)

- The alternatives are grammatically defined (i.e. they are part of the meaning of the polarity sensitive elements), so unlike regular scalar elements, they cannot be ignored. In other words, when a proposition like min kimi da(qani) kör-t-üm reaches LF, its alternatives are marked to be interpreted by an alternative-sensitive operator.
- These alternative-sensitive operators are also known as EXHAUSTIFIERS. An exhaustifier performs some pre-defined actions on the alternatives of the prejacent.
- The most basic exhaustifier is O, which is a covert counterpart to only (Karttunen and Peters 1979; Rooth 1985, 1992; Krifka 1995; Chierchia, Fox, and Spector 2012):

$$
\begin{equation*}
\mathrm{O}_{\mathrm{ALT}}(\phi)=\phi \wedge \forall \psi \in \operatorname{ALT}[\psi \rightarrow \phi \subseteq \psi] \text {, where ' } \subseteq \text { ' means 'entails' } \tag{27}
\end{equation*}
$$

(Chierchia 2013)
a. $\mathrm{O}(\phi)$ asserts ϕ and eliminates (i.e. negates) all of the alternatives which are not entailed by ϕ.

- Chierchia's (2013) system splits the exhaustification of the subdomain and scalar alternatives as two separate steps (28): ${ }^{11}$

Split exhaustification

- Exhaustification of the positive version of (22) is shown in (29):
a. $\quad \mathrm{O}_{\sigma \text { Alt }}\left(\mathrm{O}_{\mathrm{DA}}(\mathrm{p} \vee \mathrm{q})\right)=$
b. $\quad \mathrm{O}_{\mathrm{DA}}(\mathrm{p} \vee \mathrm{q})=(\mathrm{p} \vee \mathrm{q}) \wedge \underbrace{\neg \mathrm{p} \wedge \neg \mathrm{q}}_{\neg(\mathrm{p} \vee \mathrm{q})}$ (DeMorgan's law)
$(\mathrm{p} \vee \mathrm{q}) \wedge \neg(\mathrm{p} \vee \mathrm{q})$ is a contradiction!
- In (29-a), O O_{DA} excludes the subdomain alternatives of ($\mathrm{p} \vee \mathrm{q}$) which are not entailed-i.e. it negates

[^4]them. ${ }^{12}$

- This results in a contradiction, because the negated subdomain alternatives (29-b) are equivalent to a negation of the prejacent! This contradiction is the source of ungrammaticality in Chierchia's (2013) theory of NPIs in positive environments. Because the alternatives are grammatically defined, we cannot pragmatically eliminate this contradiction.
- In other words, (30) is ungrammatical because it is is a contradiction.
(30) \quad Min kimi da(qanì) kör-t-üm

1SG who.ACC $d a \quad$ see-PST-1SG
'*I saw anybody'

- When the prejacent is negated, O_{DA} does not result in a contradiction. Negation scopes over the alternatives as well (31):

	$\neg(\mathrm{p} \vee \mathrm{q})$		Prejacent
$\neg \mathrm{p}$		$\neg \mathrm{q}$	D-Alts
	$\neg(\mathrm{p} \wedge \mathrm{q})$		$\sigma-$ Alt

- In (31), all of the alternatives are entailed by the prejacent, so $\mathrm{O}(\mathrm{nly})$ cannot negate them. Hence, exhaustifying them will simply return the prejacent and all of the alternatives it entails:

$$
\begin{array}{ll}
\text { a. } & \left.\mathrm{O}_{\sigma-\operatorname{Alt}(\mathrm{O}}^{\mathrm{DA}}(\neg(\mathrm{p} \vee \mathrm{q}))\right)=\neg(\mathrm{p} \vee \mathrm{q}) \tag{32}\\
\text { b. } & \text { Entailed alternatives of } \neg(\mathrm{p} \vee \mathrm{q})=\{\neg \mathrm{p}, \neg \mathrm{q}, \neg(\mathrm{p} \wedge \mathrm{q})\} \\
\text { c. } & \mathrm{O}_{\mathrm{ALT}}(\neg(\mathrm{p} \vee \mathrm{q}))=\neg(\mathrm{p} \vee \mathrm{q}) \wedge \neg \mathrm{p} \wedge \neg \mathrm{q} \wedge \neg(\mathrm{p} \wedge \mathrm{q})
\end{array}
$$

- This explains the grammaticality of NPIs in negative environments:
(33)

Min kimi da(qaní) kör-bö-t-üm
1SG who.ACC $d a$ see-NEG-PST-1SG
'I didn't see anyone'

3.2 Coordination

- How can exhaustification explain $d a(q a n \dot{i})$'s meaning in coordination structures? Recall that in positive environments, da(qaní) ...da(qaní) means 'both...and' (34-a), but in negative environments, it means 'neither...nor' (34-b).

Ian coffee $d a$ tea $d a$ drink-PST-3SG
'Ian drank both coffee and tea'
b. Ian [kofje da(qani)] [čaj da(qani)] is-pe-t-e

Ian coffee $d a$ tea $d a$ drink-NEG-PST-3SG
'Ian drank neither coffee nor tea'

- Given the presence of $d a(q a n \dot{\mathrm{t}})$ in NPIs $\S 3.1$, as well as the 'neither...nor' reading in (34-b), it would seem to follow that we are dealing with a disjunction here as well.
- Further evidence that this is the same morpheme here as in the NPI cases comes from coordinated NPIs: two $d a(q a n \dot{\ddagger})$-marked NPIs can be coordinated under negation (35-a), but an additional $d a(q a n \dot{)})$ in the coordinands is not acceptable (35-b), nor is the addition of a conjunction like uonna (35-c):
a. Min [kimi da(qaní)] [tugu da(qaní)] kör-*(bö)-t-üm

1SG who.ACC $d a \quad$ what.ACC $d a$ see-(NEG)-PST-1SG
'I saw neither anybody nor anything'
b. *Min [kimi da(qaní) da(qani)] [tugu da(qani) da(qani)] kör-bö-t-üm
c. *Min [kimi da(qani] uonna [tugu da(qaní)] kör-bö-t-üm

- But how in the world can we explain the conjunctive meaning in (34-a), then?!
- The solution comes in the form of two differences from the semantic proposal for NPIs §3.1. While maintaining that $d a(q a n i)$ in coordination still marks the alternatives of the host as obligatorily active,

[^5]the nature of the alternatives differs when $d a(q a n \dot{)})$ marks elements that do not have natural scalar alternatives (recall that WH-words have a natural Horn scale $<\exists, \forall>$).

- First, it is significant that in $d a(q a n \dot{\dot{i}}) \ldots d a(q a n \dot{i})$ coordination (34), there are two (or more) elements which have been marked as obligatorily alternative-sensitive, unlike with $\boldsymbol{d a}(q a n \dot{i})$-marked NPIs. It would follow that we have to exhaustify EACH of these alternatives.
- O(nly) exhaustification can be applied recursively, where not only the alternatives of the prejacent are exhaustified, but also the alternatives of the alternatives are exhaustified. This has been utilized to explain free-choice disjunction (Fox 2007), as well as free-choice items in general (Chierchia 2013).

Exhaustification of subdomain alternatives:

- (36) shows a typical alternative set, with the subdomains exhaustified (this is also known by Chiercha's (2013) term "pre-exhaustfication"). But, notice something crucial about the host of da(qani) in coordination structure:
(37) (Vinokurova 2005, p.202)
a. Ookko [tust-ar da] [saximatii-r da] Ookko [wrestle-AOR da] [play.chess-AOR $d a$] ‘Ookko both wrestles and plays chess'

Verb-Verb
b. Ookko [küüsteex da] [simsa da] Ookko [strong $d a$] [quick $d a$] 'Ookoo is both strong and fast'

Adjective-Adjective
c. Ookko [bulčut da] [sirdjit da] Ookko [hunter $d a$] [guide $d a$]
'Ooko is both a hunter and a guide'
Noun-Noun

- The (37), the coordinated elements have no inherent quantificational force-they are properties/sets. It therefore makes very little sense to consider a scalar alternative for these types of elements.
- Claim: the elements coordinated by $d a(q a n \dot{i}) \ldots d a(q a n \dot{i})$ have no scalar alternatives.
- Recursive exhaustification with $\mathrm{O}(\mathrm{nly})$ in the absence of a stronger scalar alternative results in a disjunction being strengthened to a conjunction:

$$
\begin{align*}
& \text { a. } \quad O_{\operatorname{Exh}-\mathrm{DA}}(\mathrm{p} \vee \mathrm{q})=(\mathrm{p} \vee \mathrm{q}) \wedge \underbrace{\neg \mathrm{O}(\mathrm{p})}_{(\mathrm{p} \rightarrow \mathrm{q})} \wedge \underbrace{\neg(\mathrm{p} \wedge \neg \mathrm{q})}_{(\mathrm{q} \rightarrow \mathrm{p})} \underbrace{\neg \mathrm{O}(\mathrm{q})}_{\neg(\mathrm{q} \wedge \neg \mathrm{p})}{ }^{13} \tag{38}\\
& \text { b. } \quad=\underbrace{(p \vee q) \wedge \underbrace{(p \rightarrow q) \wedge(q \rightarrow p)}_{(p \leftrightarrow q)}}_{(p \vee q) \wedge(p \leftrightarrow q)}
\end{align*}
$$

- The equivalence of (38-b) to and is shown in (39):
(39)

p	q	$(\mathrm{p} \vee \mathrm{q})$	$(\mathrm{p} \leftrightarrow \mathrm{q})$	$(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \leftrightarrow \mathrm{q})$
T	T	T	T	T
T	F	T	F	F
F	T	T	F	F
F	F	F	T	F

- If we were to carry on and exhaustify the scalar alternative, we would reach a contradiction:

$$
\begin{equation*}
\mathrm{O}_{\sigma \mathrm{Alt}}\left(\mathrm{O}_{\operatorname{Exh}-\mathrm{DA}}(\mathrm{p} \vee \mathrm{q})\right)=(\mathrm{p} \wedge \mathrm{q}) \wedge \neg(\mathrm{p} \wedge \mathrm{q}) \tag{40}
\end{equation*}
$$

- This mechanism has been utilized to explain elements which have a conjunctive/universal meaning in positive environments, but a narrow-scope disjunction/existential reading with negation, such as ChildEnglish or (Singh et al. 2016), Malay pun (Wong 2017), Hebrew kol (Bar-Lev and Margulis 2014), and

[^6]Warlpiri manu (Bowler 2014). ${ }^{14}$

- The justification for not exhaustifying a scalar alternative is typically that the language at hand does not have an element within the same class as the alternative-sensitive element which is a stronger scale mate-For example, for Warlpiri manu, there is simply no additional word for 'and' (Bowler 2014). ${ }^{15}$
- Rather than relying on the lack of a competing and-word, my analysis relies on the lack of a stronger alternative to each individual disjunct.
- To summarize: A sentence like (41) is underlyingly a disjunction (41-a). Da(qani) marks the alternatives of the host as obligatorily active, which results in (41-a-i) being the domain alternative of (41-a) (this is the "pre-exhaustified" alternative). We exhaustify (41-a) with respect to the set in (41-a-i), which results in (41-b)
(41) Ian [kofje da(qaní)] [čaj da(qanì)] is-t-e
'Ian drank both coffee and tea'
a. 'Ian drank coffee' \vee 'Ian drank tea'
(i) $\operatorname{ALTs}((41-a))=\{$ 'Ian drank coffee and not tea', 'Ian drank tea and not coffee' $\}$
(ii) i.e. 'Ian drank not only coffee and Ian drank not only tea'
b. 'Ian drank coffee or Ian drank tea' $\wedge \neg$ ('Ian drank coffee and not tea') $\wedge \neg$ ('Ian drank tea and not coffee')
$=$ 'Ian drank coffee or tea' \wedge 'if coffee, then tea' \wedge 'if tea, then coffee'
$=$ 'Ian drank coffee or tea' ^'Ian drank coffee if and only if Ian drank tea' Therefore, 'Ian drank coffee and tea'.

3.2.1 Extension to neither...nor reading of $d a(q a n \dot{\mathbf{i}}) \ldots d a(q a n \dot{\mathbf{i}})$

- Recursive exhaustification poses no threat in the presence of negation:

$$
\begin{align*}
& \mathrm{O}_{\operatorname{Exh}-\mathrm{DA}}(\neg(\mathrm{p} \vee \mathrm{q}))= \neg(\mathrm{p} \vee \mathrm{q}) \wedge \underbrace{\neg \mathrm{O}(\neg \mathrm{p})}_{\neg(\neg \mathrm{p} \wedge \neg \neg \mathrm{q}) \equiv \underbrace{\neg(\neg \mathrm{p} \wedge \mathrm{q})}_{(\mathrm{q} \rightarrow \mathrm{p})}} \wedge(\neg \mathrm{q} \wedge \neg \neg \mathrm{p}) \equiv \underbrace{\neg(\neg \mathrm{q} \wedge \mathrm{p})}_{\neg(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \leftrightarrow \mathrm{q})} \tag{42}\\
& \underbrace{\mathrm{O}(\neg \mathrm{q})}_{(\mathrm{pq})}
\end{align*}
$$

- The result of (42) is equivalent to $\neg(\mathrm{p} \vee \mathrm{q})$:
(43)

p	q	$\neg(\mathrm{p} \vee \mathrm{q})$	$(\mathrm{p} \leftrightarrow \mathrm{q})$	$\neg(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \leftrightarrow \mathrm{q})$
T	T	F	T	F
T	F	F	F	F
F	T	F	F	F
F	F	T	T	T

4 Appendix 1: Additional Observations and analysis

4.1 An interesting pattern: $d a(q a n \dot{i})$ and DOM

- Sakha is a differential object marking (DOM), with non-marked objects receiving a masslike (or referential, depending on the context) reading (44-a), and accusative marked objects receiving a specific interpretation (44-b):
a. kini kulaxi sje-t-e

3SG bedbug eat-PST-3SG
'S/he ate bedbug'
(non-specific)
b. Kini kulaxí-ni sje-t-e

3SG bedbug-ACC eat-PST-3SG
'S/he ate that bedbug'
(specific)

[^7]- Under negation, bare objects mirror the behavior of positive environments (44), with non-marked objects receiving an indefinite reading (45-a) and accusative-marked objects receiving a specific interpretation (45-b):
a. kini kulaxi sje-be-t-e 3SG bedbug eat-NEG-PST-3SG
(i) Non-specific: 'S/he didn't eat (any) bedbugs'
(ii) Specific: \#'S/he didn't eat (that) bedbug'
b. kini kulaxi-ni sje-be-t-e

3SG bedbug-ACC eat-NEG-PST-3SG
(i) Non-specific\# 'S/he didn't eat (any) bedbugs'
(ii) Specific: 'S/he didn't eat (that) bedbug'

- Oddly, DOM results in no difference when the object is quantified with biir in a positive sentence (46):
(46) Kini biir kulaxi-(ni) sje-t-e

3SG one bedbug-(ACC) eat-PST-3SG
'S/he ate one bedbug'

- Even more oddly, with biir objects under negation, DOM again creates a semantic distinction, with accusative again reflecting a specific interpretation (akin to a wide-scope reading of one with respect to negation):
(47) a. Kini biir kulaxi sje-be-t-e

3SG one bedbug eat-NEG-PST-3SG
(i) Non-specific:'S/he didn't eat one/any bedbug(s)
(ii) Specific: \#'S/he didn't eat one (particular) bedbug'
b. Kini biir kulaxi-ni sje-be-t-e

3SG one bedbug-ACC eat-NEG-PST-3SG
(i) Non-specific: \#'S/he didn't eat one/any bedbug(s)
(ii) Specific: 'S/he didn't eat one (particular) bedbug'

- And strangest of all, with biir da NPIs, this distinction disappears:
(48) Min biir da kinige-(ni) aax-pa-t-im

1SG one $d a$ book-(ACC) read-ACC-NEG-PST-1SG
'I didn't read a/any book'
(49)

Type of object	Polarity	DOM difference?
bare noun	pos	y
"	neg	y
biir + noun	pos	n
"	neg	y
biir $d a+$ noun	pos	$*$
"	neg	n

4.2 Daqaní vs. $d a$

- The alternation between daqani and da has been noted since the earliest descriptions of Sakh (Böhtlingk 1964 [1851]), though he expresses confusion about what governs the distribution.
- Native speakers are aware that they are the same word/morpheme/meaning.
- Generally, where daqani is acceptable $d a$ is also acceptable.
- If $d a(q a n \dot{t})$ appears to the right of a quantifier in a larger NP (i.e. $[$ QUANT + da (qaní) + Noun]), $d a$ is preferred if the word to the left is two or fewer syllables:
a. One syllable:
(i) $\quad \checkmark$ biir da N , min da N
(ii) ?? biir daqani N , min daqani N
b. Two syllables:
(i) \quad (araas $=$ 'various', elbex $=$ 'some, many')
(ii) ?? araas daqani N, elbex daqani N
c. Three syllables:
(i) $\quad \checkmark$ aqijax da N
(aqijax $=$ 'few')
(ii) $\quad \checkmark$ aqijax daqani N
- In coordination constructions, my consultant indicated preference for at least one of $d a(q a n \dot{1})$ s to be reduced:
(51) min kinige \{da/daqani\} aax-t-im suruk \{da/daqanit suruj-d-um 1SG book read-PST-1SG letter $d a \quad$ write-PST-1SG '(I was so productive) I both read a book and also write a letter'
a. $\quad \checkmark \ldots d a \ldots d a \ldots$
b. ?? ... daqaní ... daqani ...
c. \checkmark... daqani ... da ...
d. ?? ... da ... daqaní ...
(52) iisus kini-ni ütüördübütüter kihi kör-ör \{da/daqaní\} say-ar \{da/daqaní\}

Jesus 3SG-ACC healed person see-AOR $d a$ speak-AOR $d a$
buol-but-a
be-REM.PST-3SG
'Jesus healed the man, so that he could both see and speak'
[Matthew 12:22]
a. $\quad \checkmark \ldots d a$... $d a$...
b. ?? ... daqanі ... daqanі ...
c. $\quad \checkmark \ldots$ daqan $\dot{1} \ldots d a \ldots$
d. $\checkmark \ldots$... da ... daqaní ...

- On the other hand, in the answer to a disjunctive question, the consultant had a slight preference for daqani in both conjunts:
a. Question: Does Ian drink coffee or tea?
b. Answer: Ian kofje-(ní) \{da/daqani\} čaj-(í) \{da/daqaní $\}$ is-pit-e Ian coffee-(ACC) tea-(ACC) drink-REM.PST-3SG
'Ian drank both coffee and tea'
(i) $\checkmark \ldots d a \ldots d a \ldots$
(ii) โ臽 ... daqaní ... daqaní ...
(iii) \checkmark... daqanı ... da ...
(iv) ?? ... da ... daqaní ...
- While (53-b) would suggest a pragmatic contrast between the two forms, my consultant found little-to-no pragmatic contrast between $d a$ and daqani in $\mathrm{WH}+d a(q a n \dot{i})$ NPIs, indicating that if one really wants to emphasize the NPI, either $d a$ or daqaní can receive pitch accent.

```
Min tugu {\checkmark da/\checkmark daqani}}\mathrm{ aax-pa-t-im
    1SG what.ACC da read-NEG-PST-1SG
    'I didn't read anything'
```


4.3 Other licensers of $d a(q a n \dot{i})$ NPIs

- Aside from the direct scope of the clause-mate verbal negation suffix -BA (55) biir da and $\mathrm{WH}+d a(q a n \dot{i})$ NPIs are licensed by the negative copular suox (56), the prohibitive suffix -IMa (57), the negative converb -BAkka, and the the verb ilik 'not yet' (59)

Negative suffix - $B \boldsymbol{A}$

a. \quad Kim da(qani) / biir da studjen $\}$ iti kinige-ni aax-*(pa)-tax
\{who $d a \quad /$ one $d a$ student $\}$ that book-ACC read-(NEG)-REM.PST.3SG
'Nobody / no student read that book'

Negative copula suox

a. [[[Tuox da(qani)] siala \{suox / *baar\}] suruj-but-um]
what $d a$ purpose NEG.COP / COP write-REM.PST-1SG
'I wrote for no reason' / 'I didn't write for any reason'

Prohibitive -IMa

a. $\{$ Tugu da(qanì) / biir da kinige-(ni) $\} \quad$ aaq-*(ima)
$\{$ what.ACC $d a \quad /$ one $d a$ book-(ACC) $\}$ read-(NEG.IMP)
'Don't read anything' / 'Don't read any book(s)'

Negative converb -BAkka

a. \{Tugu da(qani) / biir da kinige-(ni)\} aax-pakka ereeri üören-n-im \{what.ACC $d a$ / one $d a$ book-(ACC) \} read-NEG.CVB even.though study-PST-1SG 'I studied without read anything (any book)' / 'Even though I didn't read anything (any book), I studied'
Verb ilik 'not yet'
a. Kim da(qani) biir da kinige-(ni) aax-a ilik who $d a \quad$ one $d a$ book-ACC read-CVB not.yet.3SG 'Nobody has read any book yet'

- Each of these additional negative licensers can be characterized along the same lines as $-B A$, so we need not discuss them here.
- Da(qaní)-NPIs are not grammatical in NEG-raising constructions
*Djulus [tugu da(qani) is-pip-pin dien] bil-bet
Djulus [what.ACC $d a$ drink-REM.PST-1SG say.COMP] know-NEG.AOR
intended: 'Djulus doesn't know that he drank anything'
- It is unclear why $d a(q a n \dot{i})$-marked NPIs embedded in finite clauses are not able to be licensed by matrix negation. One possibility is that in examples like (60), the presence of the complementizer dien, transparently related to die 'say' creates a quote-like environment, so (60) may be ungrammatical for a similar reason that English *Djulus never said said "I ate anything" is. ${ }^{16}$
- The only other licenser of $d a(q a n \dot{1})$-marked NPIs that I have found are standards of comparison (61-a). Here, $d a(q a n \dot{\dot{z}}) . . d a(q a n \dot{\dot{z}})$ coordination also has a conjunctive reading if there are multiple standards of comparison
(61) Standard of comparison
a. Tujara [kim-neeqer da(qani) uhun] Tujara who-CMPR $d a$ tall 'Tujara is taller than anywhere'
b. Boston Jakutskai-daaqar tiallaq da(qani) silas da(qani) Boston Yakutsk-CMPR windy $d a$ warm $d a$ 'Boston is winder and warmer than Yakutsk'
- Many analyses of standard comparisons like (61) include a covert degree negation in the comparative clause (Gajewski 2008). So while negation is not overt in examples like this, we can explain it as another case of licensing via negation.
- Da(qani)-marked NPIs are not licensed in the antecedent of a conditional (62), nor in polar questions (63). Rather, there are other quantifiers particles ere and emie which serve this role (Haspelmath 1997).
(62) [Tujara [tugu \{*da(qaní) / emit $\}$] oyor-doq-una] Djulus čaj kut-an bjer-iexteex

Tujara what $d a$ / emit repair-COND-3SG Djulus tea pour-CVB serve-FUT
'If Tujara repairs anything, Djulus will serve tea'
$\left[\operatorname{Kim}\left\{{ }^{*} \mathrm{da}(\right.\right.$ qaní $) /$ emit / ere $\left.\}\right]$ kofje ih-er $=\mathrm{ij}$?
Who da / emit / ere coffee drink-AOR $=$ Q
(kim emit) 'Does someone drink coffee?' (kim ere) 'Does anyone drink coffee?'

- This patterning of licensing environments makes $d a(q a n \dot{i})$-marked NPIs strict/strong NPIs (Zwarts

[^8]1996). Strict NPIs require a licenser to be not just simply downward entailing, but Strawson downward entailing (i.e. downward entailing in not just regular, but also the implicatures) as well as anti-additive (Gajewski 2011).
(64) ANTI ADDItivity: A function f is Anti-ADDItive iff $f(A \vee B)=f(A) \wedge F(B)$.

4.4 Biir da NPIs: some refinements

(65) Min biir da kinige-(ni) aax-*(pa)-t-im

1 SG one $d a$ book-(ACC) read-(NEG)-PST-1SG
'I didn't read any book'

- Because biir da NPIs involve numeral semantics, they do not easily lend themselves to an analysis via $\mathrm{O}(\mathrm{nly})$.
- The scale associated with numerals is richly defined: each subsequent number entails all the numbers lower than it:
(66) Scale of numerals: $\{$ one \supseteq two \supseteq three $\supseteq \ldots\}$
- A numeral like biir can be defined as a cardinality prediate:
a. $\quad \llbracket$ biir $\rrbracket=\lambda \mathrm{P}_{\langle\mathrm{e}, \mathrm{t}\rangle} \cdot \lambda \mathrm{Q}_{\langle\mathrm{e}, \mathrm{t}\rangle} \cdot \exists \mathrm{x}[\operatorname{one}(\mathrm{x}) \wedge \mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})]$
b. 【biir da kinige $\rrbracket=\lambda Q_{\langle e, t\rangle} \cdot \exists \mathrm{x}[\operatorname{one}(\mathrm{x}) \wedge \operatorname{book}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})]_{[+ \text {ALT }]}$
- In biir $d a+N P, d a$ marks the alternatives of biir as obligatorily active.
- Because the scale of numerals is richly defined, the domain alternatives of numerals are not really important: one $(\mathrm{x}) \operatorname{Vone}(\mathrm{x})$ entails one (x). So we are only dealing with the scalar alternative. While O (nly) with negation works to a degree, it predicts strange readings:
(68) $\mathrm{O}_{\sigma \text { Alt }}$ exhaustification of (65) in a negative environment
a. $\quad \operatorname{ALT}(\neg$ biir $d a)=\{\neg$ one $\subseteq \neg$ two $\subseteq \neg$ three, $\ldots\}$
b. $\quad \mathrm{O}_{\sigma \text { alt }}(\neg$ biir da $)=\mathrm{O}_{\sigma \text { Alt }}(\neg$ one $)=\neg$ one $\wedge \neg$ two $\wedge \neg$ three $\wedge \ldots$
- This does not rule out infelicitous readings of \neg biir $d a$: for example, it is compatible with readings like I didn't read [biir da book] to mean he didn't read exactly two books-because the scalar implicature is grammatically active, it is not subject to relevance, so this cannot be ruled out by pragmatics alone. In essence $\mathrm{O}_{\sigma \text { Alt }}$ fails to capture that there is something special about biir being the low endpoint of the scale of numerals.
- There is another exhaustifier which handles scales which are richly defined (as well as scales ordered by a probability metric): E, which is a covert counterpart to even (Crnič 2011, 2014; Chierchia 2013):
$\mathrm{E}_{\mathrm{ALT}}(\phi)=\phi \wedge \forall \psi \in \operatorname{ALT}\left[\phi<_{\mu} \psi\right]$ where ' $\phi<_{\mu} \psi$ ' says ' ϕ is less likely than ψ with respect to some contextually relevant probabilyt metric
- The choice between O and E is not arbitrary: Chierchia (2013) proposes a grammatical principle OPTIMAL FIT:
(70) Optimal fit (Chierchia 2013, p.153)

In exhaustifying ϕ, use O unless $\mathrm{O}(\phi)$ is trivial (=contradictory or vacuous) and there is a salient probability measure μ. A probability measure μ is salient iff one of the following holds:
a. $\quad \mu$ is salient in the context
b. ALT is totally ordered by \subseteq

- E-exhaustificaiton is only satisfied if the alternative under consideration is the least likely of all of its alternatives. Because biir 'one' is the low-point on the scale of numerals, this will be satisfied by it, but no other numerals. Further, it will only be defined under negation (as otherwise, it is entailed by all of its alternatives, and hence cannot be less likely than them).

4.5 Scalar particle $d a(q a n \dot{\text { i }})$ semantics

- The use of $d a(q a n i)$ as a scalar particle involves emphasis and probability.

Scalar focus particle

a. Even particle
[Onnooqor studjen da(qani)] iti kinige-ni aax-(pa)-t-a even student $d a$ that book-ACC read-(NEG)-PST-3SG
'Even the student (didn't) read that book'
b. Intensifiers, following non-low point quantifiers
[Elbex da kihi] kinige aax-(pa)-t-e
many $d a$ person book read-(NEG)-PST-3SG
(Positive): 'So many people read (the) book' (more people than the speaker expected)
(Negative) 'So few people read (the) book' (fewer people than the speaker expected)
c. Concessive
[Djulusi ${ }^{[}$miigin $_{s}$ sötüölee-bit-e e_{S}] die-bit- e_{i} da(qaní)] min onu baara [Djulus [1SG.ACC swim-REM.PST-3SG] say-REM.PST-3SG da] 1SG that.ACC COP kiaj-an sötüölee-bep-pin be.able-CVB swim-NEG.AOR-1SG
'Even though Djulus said I swam, I actually can't swim'

- E-exhaustification (introduced in $\S(65)$) is necessary to explain the emphatic character of examples like (71). Unlike $d a(q a n \dot{\dot{F}})$ in NPIs $\S 3.1$ and coordination 3.2, here the alternatives of $d a(q a n \dot{\mathrm{t}})$ are anchored upon the speakers expectations:
(72) Optimal Fit (Chierchia 2013, p.153)

In exhaustifying ϕ, use O unless $\mathrm{O}(\phi)$ is trivial (=contradictory or vacuous) and there is a salient probability measure μ. A probability measure μ is salient iff one of the following holds:
a. $\quad \mu$ is salient in the context
b. ALT is totally ordered by \subseteq

- Because the probability of the alternatives of scalar $d a(q a n \dot{i})$ are contingent upon the speaker's expectations, the probability of the alternatives can be ranked in many ways-hence here $d a($ qani) is not restricted to negation.
- One rather interesting aspect of the scalar focus uses of $d a(q a n \dot{)})$ is the relationship between $d a(q a n \dot{\mathfrak{F}}) . . d a(q a n \dot{\mathfrak{i}})$ coordination and the concessive uses of $d a(q a n \dot{\mathrm{~F}})$. Prima facie, concessive uses (73-a) look like $d a(q a n \dot{\dot{I}}) \ldots d a(q a n \dot{\mathfrak{t}})$ coordination (74) minus the second $d a(q a n \dot{\mathrm{I}})$. Further, in environments where it is pragmatically unlikely that both coordinands would obtain, $d a(q a n \dot{i}) . . d a(q a n \dot{i})$ coordination is infelicitious (73-b).

> a. kini [iliite iraas da(qani)] [sireje kirdeex] 3sG hand clean $d a \quad$ face dirty
> 'Even though his hands are clean, his face is dirty'
> b. \#kini [iliite iraas da(qani)] [sireje kirdeex da(qani)]
> 3sG hand clean $d a \quad$ face dirty da
> 'He has both clean hands and a dirty face'
> Ian [kofje da(qaní)] [čaj da(qani)] $d a$ drink-(NEG)-PST-3sG
> Ian coffee $d a \quad$ tea $\quad d a$ (pe)-t-e
> (pos): 'Ian drank both coffee and tea' (neg) 'Ian drank neither coffee nor tea'

- One possibility is that concessive $d a(q a n \dot{\ddagger})$ involves exhaustificaiton of only the coordinand which is marked with $d a(q a n \dot{1})$
where $\mathrm{p}=$ 'he has clean hands', $\mathrm{q}=$ 'he has a dirty face'

$(\mathrm{p} \vee \mathrm{q})$			
$\mathrm{O}(\mathrm{p})$		Prejacent	

- If we exhaustify ($\mathrm{p} \vee \mathrm{q}$) with respect to the alternative set in (75), we get the following:

$$
\begin{equation*}
\mathrm{O}(\mathrm{p} \vee \mathrm{q})=\underbrace{(\mathrm{p} \vee \mathrm{q}) \wedge \underbrace{\neg(\mathrm{p} \wedge \neg \mathrm{q})}_{(\mathrm{p} \rightarrow \mathrm{q})} \wedge \neg \mathrm{q}}_{(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge \neg \mathrm{q}} \tag{76}
\end{equation*}
$$

a. From $(\mathrm{p} \rightarrow \mathrm{q})$ and $\neg \mathrm{q}$, we can conclude $\neg \mathrm{p}$ (Modus Tolens). Thus, this is equivalent to $(\mathrm{p} \vee \mathrm{q}) \wedge \neg \mathrm{p} \wedge \neg \mathrm{q} \equiv(\mathrm{p} \vee \mathrm{q}) \wedge \neg(\mathrm{p} \vee \mathrm{q})($ DeMorgan's).

- The meaning in (76-a) seems to be close to what the speaker's expectations are in a concessive clauses: We expect that if you have clean hands, you have a clean face. If it turns out you have a dirty face, we would reason that you should also have dirty hands.

5 Appendix 2：Transcription conventions

（77）Transcriptions of Sakha sounds．

Mine	Саха	IPA	Turkic	Notes
a	〈A，a〉	［a］	A，a	
b	〈 B, б〉	［b］	B，b	
v	〈 ${ }^{\text {，}, \mathrm{B}}$ 〉	［v］	V，v	Russian loans
g	$\langle\Gamma, \Gamma\rangle$	［9］	G，g	
q	〈 5,5\rangle	［ $\mathrm{e}, \mathrm{\gamma}]$	G，${ }_{\text {g }}$	［ y ］following low vowels
d	〈Д，д〉	［d］	D，d	
dj	〈ДЬ，дь〉	［f］	n / a	
e，je	〈Е，e〉	［e，je］	e，ye	Russian loans
jo	〈 E, e ¢	［jo］	yo	Russian loans
zh	〈Ж，ж〉	［3］	J，j	Russian loans
Z	$\langle 3,3\rangle$	［z］	Z，z	Russian loans
i	＜И，и〉	［i］	İ，i	
j	\langle Й，	［j，j̃］	Y，y	
k	〈K，к〉	［k］	K，k	
1	〈Л，л〉	［1］	L，l	
m	〈М，м＞	［m］	M，m	
n	〈Н，${ }^{\text {¢ }}$ 〉	［n］	N， n	
Y	〈Н，н〉	［ g ］	N，${ }^{\text {n }}$	
nj	〈НЬ，нь〉	［ n ］	n / a	
o	$\langle\mathrm{O}, \mathrm{o}\rangle$	［o］	O，o	
ö	$\langle\Theta, \Theta\rangle$	［ \varnothing ］	Ӧ，ö	
p	$\langle\Pi, \Pi\rangle$	［p］	P，p	
r	〈 $\mathrm{P}, \mathrm{p}\rangle$	［r］	R，r	
S	〈C，c \rangle	［s］	S，s	
h	〈h，h ${ }^{\text {，}}$	［h］	H，h	
t	$\langle\mathrm{T}, \mathrm{T}\rangle$	［t］	T，t	
u	〈У，y ${ }^{\text {，}}$	［u］	U，u	
ü	〈Y，Y〉	［y］	Ü，ü	
f	＜Ф，ф〉	［f］	F，f	Russian loans
x	〈 $\mathrm{X}, \mathrm{x}\rangle$	［q，x］	X，x	［q］syllable initial
ts	〈Ц，ц〉	［ts］	n / a	Russian loans
č	〈Ч，¢	［c］	Ç，¢	
sh	〈Ш，ш〉	［J］	Ş，̧̧	Russian loans
ch	〈Щ，щ〉	［6：］	n / a	Russian loans
n／a	〈 b, b 〉	［．］	n / a	Russian loans
$\dot{\text { i }}$	〈Ы，ы〉	［i，ur］	1	Usually described as［u］，though consultant［i］
j	〈 $\mathrm{b}, \mathrm{ь}$ 〉	$\left.{ }^{[j}\right]$	n / a	palatalization，Russian loans
e	\langle З，Э〉	［e］	E，e	
ju	〈Ю，ю〉	［ju］	yu	Russian loans
ja	$\langle Я, л\rangle$	［ja］	ya	Russian loans

References

Akkus，Faruk（2018）．＂Un－shifiting indexicals＂．Manuscript，University of Pennsylvania． 2018.
Bar－Lev，M．and D．Margulis（2014）．＂Hebrew kol：a universal quantifer as an undercover existential＂． In：Proceedings of Sinn und Bedeutung，60－76．
Böhtlingk，Otto（1964［1851］）．Über die Sprache der Jakuten．Indiana University Publications：Uralic／ Altaic Series，Vol．35， 1964 ［1851］．
Bowler，Margit（2014）．＂Conjunction and disjunction in a language without＇and＂．In：Proceedings of Semantics and Linguistic Theory 24，137－155．

Chierchia, Gennaro (2004). "Scalar implicatures, polarity phenomena, and the syntax/pragmatics interface". In: Structures and Beyond. Ed. by A. Belletti. Oxford University Press, 2004.

- (2006). "Broaden Your Views: Implicatures of Domain Widening and the "Logicality" of Language". In: Linguistic Inquiry 37.4.
- (2013). Logic in Grammar: Polarity, Free Choice, and Intervention. Oxford University Press, 2013.

Chierchia, Gennaro, Danny Fox, and Benjamin Spector (2012). "Scalar implicature as a grammatical phenomenon". In: Semantics (HSK33.3). Ed. by Klaus von Heusinger, Claudia Maienborn, and Paul Portner. 2012, 2297-2331.
Crnič, Luka (2011). "Getting even". PhD thesis. Massachusetts Institute of Technology, 2011.

- (2014). "Non-monotonicity in NPI licensing". In: Natural Language Semantics 22, 169-217.

Deal, Amy Rose (2018). "Indexiphors: Notes on embedded indexicals, shifty agreement, and logophoricity". In: The leader of the pack: A festschrift in honor of Peggy Speas. Ed. by Rodica Ivan. 2018.

- (2019). A theory of indexical shift. Cambridge: MIT Press, 2019.

Erdal, Marcel (2004). A Grammar of Old Turkic. 2004.
Fauconnier, Gilles (1975). "Pragmatic Scales and Logical Structure". In: Linguistic Inquiry VI.3, 353375.

Fox, Danny (2007). "Free choice disjunction and the theory of scalar implicatures". In: Presupposition and Implicature in Compositional Semantics. Ed. by U. Sauerland and P. Stateva. Basingstoke: Palgrove Macmillan, 2007.
Fox, Danny and Roni Katzir (2011). "On the characterization of alternatives". In: Natural Language Semantics 19, 87-107.
Furukawa, Yukio (2007). "Indeterminates+MO is neither an NPI nor an NCI". In: Proceedings of the Workshop on Altaic Formal Linguistics II. Ed. by Meltem Kelepir and Balkız Öztürk. 2007.
Gajewski, Jon (2008). "NPI any and connected exceptive phrases". In: Natural Language Semantics 1, 69-110.

- (2011). "Licensing strong NPIs". In: Natural Language Semantics 19.2, 109-148.

Glinert, Lewis (1989). The Grammar of Modern Hebrew. Cambridge University Press, 1989.
Harrison, David K. and Gregory D.S. Anderson (2006). Tuvan Talking Dictionary. 2006.
Haspelmath, Martin (1997). Indefinite Pronouns. Clarendon Press, 1997.
Horn, Larence R. (1989). A Natural History of Negation. Chicago: University of Chicago Press, 1989.
Karttunen, L. and S. Peters (1979). "Conventional implicature". In: Presupposition. Ed. by C.-K. Oh and D. A. Dinnen. New York: Academic Press, 1979.

Keenan, Edward L. and Leonard M. Faltz (1985). Boolean semantics for natural language. Rerldel, Dordrecht, Holland, 1985.
Keenan, Edward L. and Jonathan Stavi (1986). "A semantic characterization of natural language determiners". In: Linguistics and Philosophy 9, 253-326.
Kelepir, Meltem (1996). "Topics in Turkish Syntax: Clausal Structure and Scope". PhD thesis. Massachusetts Institute of Technology, 1996.
Kornfilt, Jaklin (1997). Turkish. Routledge, 1997.
Kratzer, Angelika and Junko Shimoyama (2002). "Indeterminate Pronouns: The View from Japanese". In: The Proceedings of the Third tokyo Conference on Pyscholinguistics. Ed. by Yukio Otsu. Hituzi Syobo, Tokyo, 2002.
Krifka, Manfred (1995). "The Semantics and Pragmatics of Polarity Items". In: Linguistic Analysis 25.
Krueger, John R. (1977). Tuvan Manual. Indiana University Uralic / Altaic Series (Volume 126), 1977.
Kuroda, S.-Y. (1965). "Generative Grammatical Studies in the Japanese Language". PhD thesis. Massachusetts Institute of Technology, 1965.
Ladusaw, William (1979). "Polarity Sensitivity as Inherent Scope Relations". PhD thesis. University of Texas at Austin, 1979.
Lahiri, Utpal (1998). "Focus and Negative Polarity in Hindi". In: Natural Language Semantics 6, 57-125.
Mitrović, Moreno (2014). "Morphosyntactic Atoms of Propositional Logic". PhD thesis. University of Cambridge, 2014.
Mitrović, Moreno and Uli Sauerland (2014). "Decomposing coordination". In: NELS 44. Ed. by Jyoti Iyer and Leland Kusmer. 2014.

- (2016). "Two conjunctions are better than one". In: Acta Linguistica Hungarica 63.

Öztopçu, Kurtuluş et al. (1999). Dictionary of the Turkic Languages. Routledge, 1999.
Progovac, Ljiljana (1994). Negative and Positive Polarity: A Binding Approach. Cambridge University Press, 1994.
Rooth, M. (1985). "Association with focus". PhD thesis. University of Massachusetts, Amherst, 1985.

Rooth, M. (1992). "A theory of focus interpretation". In: Natural Language Semantics 1 (1), 75-117.
Rullmann, Hoetze (2003). "Additive particles and polarity". In: Journal of Semantics 20, 329-401.
Sauerland, Uli (2004). "Scalar implicatures in complex sentences". In: Linguistics and Philosophy 27, 367-391.
Shimoyama, Junko (2006). "Indeterminate Phrase Quantification in Japanese". In: Natural Language Semantics 14.

- (2011). "Japanese Indeterminate Negative Polarity Items and Their Scope". In: Journal of Semantics 28.

Shklovsky, Kirill and Yasutada Sudo (2014). "The syntax of monsters". In: Linguistic Inquiry 45.3, 381402.

Singh, Raj et al. (2016). "Children interpret disjunction as conjunction: Consequences for theories of implicature and child development". In: Natural Language Semantics 24, 305-352.
Sudo, Yasutada (2012). "On the Semantics of Phi Features of Pronouns". PhD thesis. Massachusetts Institute of Technology, 2012.
Szabolcsi, Anna (2010). Quantification. Cambridge: Cambridge University press, 2010.

- (2015). "What do quantifier particles do?" In: Linguistics and Philosophy 38, 159-204.
- (2017). "Additive Presuppositions are Derived Through Activating Focus Alternatives". In: Proceedings of the 21st Amsterdam Colloquium. Ed. by Alexandre Cremers, Thomas van Gessen, and Floris Roelofsen. 2017, 455-464.
- (2018). "Two types of quantifier particles: Quantifier-phrase internal vs. heads on the clausal spine". In: Glossa 3.1, 1-32.
Szabolcsi, Anna and Bill Haddican (2004). "Conjunction Meets Negation: A Study in Cross-linguistic Variation". In: 21, 219-249.
Tonciulescu, Keren C. (2011). "Licensing Conditions for Indefinite Pronouns in Modern Hebrew". PhD thesis. University of Ottowa, 2011.
Vinokurova, Nadya (2005). "Lexical Categories and Argument Structure: A Study with Reference to Sakha". PhD thesis. Universiteit Utrecht, 2005.
Wong, Deborah J.M. (2017). "Negative Polarity Items in Malay: An Exhaustification Account". In: Proceedings of GLOW in Asia XI.
Zwarts, Frans (1996). "Three Types of Polarity". In: Plural Quantification. Ed. by F. Hamm and E. Hinrichs. Dordrecht: Kluwer, 1996, 177-238.

Contents

1 Introduction 1
1.1 Preview of analysis and road-map 2
2 Typology of da(qani) 2
2.1 How unusual is this distribution? 3
2.2 Da(qani)'s cognate in other Turkic languages 5
3 Semantics of da(qani) 6
3.1 NPIs 7
3.2 Coordination 9
3.2.1 Extension to neither...nor reading of $d a(q a n \dot{\mathrm{i}}) \ldots d a(q a n \dot{\mathrm{i}})$ 11
4 Appendix 1: Additional Observations and analysis 11
4.1 An interesting pattern: $d a($ qaní) and DOM 11
4.2 Daqaní vs. $d a$ 12
4.3 Other licensers of $d a(q a n \dot{\mathrm{i}}) \mathrm{NPIs}$ 13
4.4 Biir da NPIs: some refinements 15
4.5 Scalar particle $d a(q a n \dot{\text { i }})$ semantics 15
5 Appendix 2: Transcription conventions 18

[^0]: ${ }^{1}$ Contact: ikirby@g.harvard.edu, scholar.harvard.edu/ikirby
 ${ }^{2}$ See $\S 5$ for transcription conventions used in this paper.
 ${ }^{3}$ Many thanks to my Sakha consultant Daria Boltokova (and her mother) for the sentences and judgments provided here. I would also like to thank Jonathan Bobaljik, Uli Sauerland, and Dora Mihoc for their guidance on this project. Others I'd like to thank are: Andreea Nicolae, Gennaro Chierchia, Jim Huang, Gunnar Lund, Aurore Gonzalez, Tamisha Tan, Deniz Satik, Niels Kuehlert, and Hande Sevgi.
 ${ }^{4}$ Abberviations used in glosses: 1, 2, 3, SG, PL first, second, third person (pronouns and agreement markers), singular and plural, $\mathrm{ACC}=$ accusative case, $\mathrm{AOR}=$ aorist, $\mathrm{CMPR}=$ comparative case, $\mathrm{COP}=$ copula, $\mathrm{CVB}=$ converb, $\mathrm{DAT}=$ dative, FUT $=$ future, NEG $=$ negation, PST $=$ past, REM. $\mathrm{PST}=$ remote past.

[^1]: ${ }^{5}$ But not vice versa. See $\S 4.2$ for a tentative description of the patterning of da vs. daqani
 ${ }^{6}$ e.g. Modern Hebrew quantifier kol Bar-Lev and Margulis 2014; Japanese particle -mo (Kuroda 1965; Shimoyama 2006; Mitrović 2014); Warlpiri coordinator manu Bowler 2014)
 ${ }^{7}$ See Appendix $\S 4.3$.

[^2]: ${ }^{8}$ When we investigate further the other licensing environments of $d a(q a n \dot{\dot{F}})$ (in Appendix §4.3), it turns out that da(qani) NPIs are actually only licensed by anti-additive functions (negation, comparatives) (Zwarts 1996).

[^3]: ${ }^{9}$ Because of the nature of numerals like biir 'one', biir da NPIs require some additional assumptions that are not worth spelling out for the purposes of this talk. See $\S 4.4$ for a brief discussion.
 ${ }^{10}$ This is one standard assumption made about the semantics of WH-terms, though not the only. It is generally assumed in this theory, so I will not take time to explore other options.

[^4]: ${ }^{11}$ The significance of this will become clearer in the next subsection, where it is argued that there is no scalar alternative to exhaustify for $d a(q a n \dot{i}) \ldots d a(q a n \dot{i})$ coordination. Note that we Do need a scalar alternative for NPIs, because only exhaustifying the domain alternatives would predict a salvageable meaning with a modal: $\mathrm{O}_{\mathrm{DA}}(\diamond(\mathrm{p} \vee \mathrm{q}))=\diamond(\mathrm{p} \vee \mathrm{q}) \wedge$ $\neg \diamond \mathrm{p} \wedge \mathrm{q} \equiv \diamond(\mathrm{p} \vee \mathrm{q}) \wedge \diamond \neg(\mathrm{p} \vee \mathrm{q})$. The exhaustified scalar alternative $\neg \diamond(\mathrm{p} \wedge \mathrm{q})$ contradicts this.

[^5]: ${ }^{12}$ For the curious reader, continuing to exhaustify the scalar alternative cannot save the derivation in (29), because it will not undo the contradicion (i.e. $\mathrm{O}_{\sigma \mathrm{Alt}}(\mathrm{p} \vee \mathrm{q})=(\mathrm{p} \vee \mathrm{q}) \wedge \neg(\mathrm{p} \wedge \mathrm{q})$).

[^6]: ${ }^{13}$ Material implication: $\neg(\phi \wedge \neg \psi) \Leftrightarrow(\phi \rightarrow \psi)$

[^7]: ${ }^{14}$ It is also explored by Chierchia as a way to account for the universal reading of English free-choice any (2013, p.311), though he ultimately rejects it for this case because it would not prevent any from being grammatical without a modal.
 ${ }^{15}$ Sakha has a coordinator uonna which is typically translated as 'and', though it carries a meaning like 'in spite of' (Vinokurova 2005, p.202). Regardless, da(qani) is not, in itself a coordinator-it is a focus particle which occurs with asyndetic conjunction.

[^8]: ${ }^{16}$ A note about the shifted reading in (60) and NPIs: Embedded clauses with a die-complementizer where the matrix and embedded subject are co-indexed obligatorily shift agreement from 3rd, 2nd to first, though overt logophoric pronouns (min 1sG, bihigi 1PL) cannot be coindexed with the matrix subject. This is a characteristic of the pro-dropped subjects being indexiphoric (Deal 2018, 2019), rather than true indexical shift (as has been argued for Uyghur (Sudo 2012; Shklovsky and Sudo 2014) and some dialects of Turkish (Akkus 2018)). True indexical shift is known to allow matrix negation to license embedded NPIs (in fact, this is one of the main diagnostics of indexical shift), though indexiphors have not been examined closely with regards to this diagnostic.

